Midterm - Partial Differential Equations (2022-23)

 Time: 2 hours.

 Time: 2 hours.}

Attempt all questions, giving proper explanations.
You may quote any result proved in class without proof.

1. [3 marks] Give an example to show that non-uniqueness might hold for differential equations of the form $u^{\prime}(t)=f(u(t))$ with continuous $f: \mathbf{R} \rightarrow \mathbf{R}$, unless some additional assumptions are made on f.
2. Consider the differential equation $u^{\prime}(t)=f(u(t))$, where $f: \mathbf{R} \rightarrow \mathbf{R}$ is Lipschitz.
(a) [2 marks] Show that for any $t_{0} \in \mathbf{R}, u(t)$ is a solution if and only if $u\left(t-t_{0}\right)$ is a solution.
(b) [5 marks] Show that for two maximal solutions $\left\{x_{j}(t), t \in I_{j}\right\}, j=1,2$, the images $\gamma_{j}=\left\{x_{j}(t): t \in I_{j}\right\}$ either coincide or are disjoint.
3. [$\mathbf{9}$ marks] Find the solution of the heat equation $\partial_{t} u=\partial_{x x} u$ on the spatial interval $[0, \pi]$, with boundary conditions $\partial_{x} u(t, 0)=0$ and $u(t, \pi)=0$, and initial profile $u(0, x)=f(x)$ satisfying the boundary conditions. Clearly state any assumptions you might make in solving the problem.
4. [11 marks] Solve the PDE $u_{t}+u u_{x}=0$, with initial profile

$$
u(0, x)=\left\{\begin{array}{lc}
-1, & -\infty<x \leq-a \\
x / a, & -a<x<a \\
1, & a \leq x<\infty
\end{array}\right.
$$

If no continuous solution exists, find a weak solution.
Next solve the PDE $u_{t}+u u_{x}=0$, with the (different from previous question) initial profile

$$
u(0, x)=\left\{\begin{array}{lc}
1, & -\infty<x \leq-a \\
-x / a, & -a<x<a \\
-1, & a \leq x<\infty
\end{array}\right.
$$

If no continuous solution exists, find a weak solution.

